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RANDOM EMBEDDINGS OF
EUCLIDEAN SPACES IN SEQUENCE SPACES

BY
GIDEON SCHECHTMAN'

ABSTRACT

It is proved that for some absolute constant d and for n =dm most n Xm
matrices with =1 entries are good embeddings of I3 into I} Similar theorems
are obtained where I} is replaced by members of a wide class of sequence
spaces.

1. Introduction

The main result of this paper is the following theorem.

THEOREM 1. There exists a constant d >0 such that for all pairs of natural
numbers n, m with n =< dm there exist signs ¢,; = =1, i=1,---m, j=1,---,n
satisfying

1 n ) 12 n
Z(z a,) éuz af;
i=1 j=1

where f; = (1/m)(e1;, €25, *» €m;) and ||-|| is the [T norm. Moreover, the state-
ment holds for more than half the possible choices of signs ;.

n 12
§4(E af) forall (a;));-,CR
1

j=

Of course, the novelty of this theorem is in the particular form of embedding
17 into IT. The fact that I3 embeds into [T for n = dm is by now well-known (cf.
[3] and [6]). We also find the proof of Theorem 1 instructive.since it reveals the
relation between the central limit theorem and finding euclidean subspaces in
Banach spaces.

A similar theorem is proved in [2] and [1] for [T, 2=s <<« instead of IT; a
combination of the two results enables us to extend them to a large class of
spaces. We first recall the definition of g-concavity: Let X be a space with a
1-unconditional basis xi,* -+, x., X is said to have q-concavity constant =M
(1=q=», I=M<x)if forall n and for all f; in X, 1=j=n
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|(Botar) |20 (Sar)”

where

=S lal itf =3 ax.

TueoreM 2. Forall 1 = q, M < there exists a d = d(q, M) >0 such that if n
and m satisfy n = d - min(m, m*?) and x,, - - -, X is a 1-symmetric basis of some
Banach space with q-concavity constant = M then there exist signs &,; = *1,
i=1,---,m, j=1,--- n satisfying

n 1/2 n n 1/2
d(z a,%) =[S af éd“(z a§) forall (@) CR
f = i=1

i=1
where f, =A(m)"' S egx (A(m) =|=% x|)).

TueoReM 3. Forall 1 = q, M <o there exists a d = d(q, M) >0 such that ifn
and m satisfy n = d - min(m, m*?) and x,,- - -, X is a 1-unconditional basis of
some Banach space with q-concavity constant =M then there exist signs
e;=*1,i=1,---,m, j=1,---,n and a sequence a,," "+, a» in R such that

)53 at|sa(3a1)" forait@r-cr

,_

where f; = 2_, aigi ;.

Theorem 1 is proved in Section 2, and Theorems 2 and 3 in Section 3.

2. Proof of Theorem 1

Let (2, % P) be a probability space, (¢, Y=F,CHC -+ F =F an in-
creasing sequence of o-fields. Given an % measurable real function f we denote
by E.f the conditional expectation of f with respect to %, 0=k =1, and by
d, = E.f — Ex_.f, 1 = k =1 the martingale difference sequence associated with f.

LemMAa 1. Assume E.di=ai and |d.|=B for 1=k =1 Then for all
0=c=p"Saai

P(If—Eof|§C)§2exp(—cz/(421: ai)).

The lemma and its proof below are probably known. However, since we could
not find an adequate reference we include a proof.



Vol. 40, 1981 RANDOM EMBEDDINGS OF EUCLIDEAN SPACES 189

Proor. For all |y|=pB, A >0 we have the elementary inequality
exp(Ay) =1+ Ay + B (exp(AB) —1— AB)y™.
If in addition AB =1, then exp(AB)—1—AB =(AB)’ and
exp(Ay) =1+ Ay +A%y%
It follows that, for 1=k =1! and A such that A8 =3,
Eiexp(Adi) =1+ AV ai=exp(A’ai).

For each m =1 we get
E exp()\ > dk) =E ﬁ exp(Ady) = E[( H exp(Ady) )(E,,._,exp()\d,,. ))]
k=1 k=1 =1

m—1
= E( I1 exp(Adk)) -expA’an.

k=1

A simple induction argument shows then that, if AS =1,

i !
Eexp(A > dk>§exp()t2 > ai),
k=1

Choose A = ¢/(22k-1a}). Then, if c = B7'Zi_, ai, AB =3, and

P(f——Eofzc)éexp<—c2/<4i ai)).

Since the same inequality holds for —f instead of f we get the desired
inequality. O

REMARK. A similar inequality has already been used in the context of
Banach spaces by Maurey [8].

ProoF OF THEOREM 1. Fix n,m €N. Let ¢ =0,C0,C:-Co,.n be an
increasing family of subsets of {1,2,---,m}x{1,2,---,n} with =k 0=k=
nm. Consider the probability space (Q %, P) where Q={-1,1}"", ¥ =2 and
P((e;)1j-)=2""". For 0=k = nm let % be the field consisting of all sets
which depend only on the coordinates appearing in oy, i.e. an atom of % is a set
of the form
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A((8)ijen) ={(8)=1]=1; &5 = &; for i, j € av}.
Fix a sequence (a;)}-; with 27, a; =1 and consider the function

f(e)= “%22 & a:€ .

If ¢,6 €Q are different only in their i,j coordinate, then |f(e)—f(8)|=
(2/m)|a;|. 1t follows that, if A is an atom of %._;, then

max, Eif — min, Eif = (2/m)| a;]

where j is such that {(i, j)} = o\ \ow_, for some (unique) i. Thus |di | = (2/m)| g;| =
2/m. Z,Z-,((2/m)a;) =4/m, so by Lemma 1

P(|f —Ef|=c)=2exp(—c’m/16)
for all ¢ =2. By the Khinchine inequality [10], 1/V2 = Ef =1; thus
P(12V2=f=2)>1-2exp(— m/128).

We now choose an g-net M on the sphere of I; of cardinality =< exp(2n/e) (cf.
[3]), and get

5SS cuae
m

i=1j=1

=2forall (a,)EM)>1 2exp<2——1—;18)
€

Now, choose ¢ such that

= forall (g;)]- €M

£ jA€;
2V2 "m ,,Si ™
implies

n

A

€ jQ;€;

=

[+

mizij=1

=4 forall ()= with D, a?=1.
j=1

Then, if n =3e(m/128 —log4),

l< _1_ UL

4=“m ,2:.,21 a6l =4

for all (@);-, with 2, a} = 1 with probability >%. d
j=1

ReMARK. The requirement that (e;)iZ; is the unit vector basis of IT" and that
||l is the I7 norm can be weakened somewhat in one of the following two ways:
(1) 3K such that
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3

Ave

*

m
e
i=1

or (2) || |l has cotype q < with constant L, ||e;||=1 for 1 =i =m and

&= 2 | | for all (a;)~,
=1

m

eZie

i=1

=K

+

The constants d and 4 in the statement of the theorem will depend nowon K, L
and g.

3. Proof of Theorems 2 and 3
We begin by stating a theorem proved in [2] and [1]:

THEOREM (B.D.G.J.N.). For each 2=q <« there exist constants 0 <K,
d < such that for all n and m with n = dm® for more than half the possible
choices of signs ¢, = *1,i=1,---m, j=1,---n

k'(3a1) =3 ar=

where f; =m ™" (e, €2, * ", €m;) and ||H is the 17 norm.

172
> al ) forall (a;);-,CR

=1

This is essentially theorem 1.1 in [1]. The case ¢ =2 is not included in the
statement there but see the remark following lemma 2.3 in [1]. For q >2, d can
be chosen as 1.

As an immediate corollary of this and Theorem 1 we get:

PROPOSITION 1. Let 2= q <. There exist constants 0 < d, K <« such that if
n=dm® and x,,- -, x. is a sequence in some Banach space satisfying

m l/q
ax; | = (%2 | a; |") forall (a)-,CR
i=1

then there exist signs ¢,;, i =1,---.m, j=1,-+-, n with

K"(i af)l/zé K(i a,‘7)”2

j=1 j=1

n
a,'f} =
ji=1

where f, =X ex, j=1,-- -, n.
Moreover, there is one sequence of signs (&:;) which works simultaneously for all

(%), satisfying (*).

ProoF oF THEOREM 2. If (x;)i~, is 1-symmetric, then
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= max | a|.

Isi=m

(%+) Zla.- [=A@m)™? "Z ax;

1
m;

A simple renorming argument (cf. [7], p. 54) shows that without loss of generality
the g-concavity constant M = 1. Then the argument in ([S], p. 14) shows that the
right-hand side in (**) may be replaced by ((1/m)=7,|a:|*)"* and we apply the
proposition. O

RemMark. The assumption “(x; )iz, is 1-symmetric” can be replaced by “(x;)i~;
is 1-unconditional and || 2, x; || | Z; x *|| = m”’; consult [9] where such bases are
treated.

ProoOF OF THEOREM 3. It follows from [4] that there exists a sequence (a; )%,
such that

711—21 la;| = Zl aax || = lmS'_zl)'("Ia,-I for all (a;))™: CR.
The rest of the proof is exactly the same as that of Theorem 2. |
REFERENCES

1. G. Bennett, L. E. Dor, V. Goodman, W. B. Johnson and C. M. Newman, On uncom-
plemented subspaces of L,, 1 <p <2, Israel J. Math. 26 (1977), 178-187.

2. G. Bennett, V. Goodman and C. M. Newman, Norms of random matrices, Pacific J. Math. 59
(1975), 359-365.

3. T. Figiel, J. Lindenstrauss and V. D. Milman, The dimension of almost spherical sections of
convex bodies, Acta Math. 139 (1977), 53-94.

4. R. I. Jamison and W. H. Ruckle, Factoring absolutely converging series, Math. Ann. 224
(1976), 143-148.

5. W. B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri, Symmetric structures in Banach
spaces, Memoirs Amer. Math. Soc. No. 217; 1979.

6. B.S. Kashin, Diameter of some finite dimensional sets and of some classes of smooth functions,
Izv. AN SSSR, Ser. Mat., 41 (1977), 334-351 (Russian).

7. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, II, Function Spaces, Springer-
Verlag, 1979.

8. B. Maurey, Construction de suites symmetrique, C. R. Acad. Sci. Paris, Sér. A-B 288 (1979),
679-681.

9. H. P. Rosenthal, Some applications of p-summing operators to Banach space theory, Studia
Math. 58 (1976), 21-43.

10. S. 1. Szarek, On the best constant in the Khinchine inequality, Studia Math. 58 (1976),
197-208.

DEPARTMENT OF THEORETICAL MATHEMATICS
THE WEIZMANN INSTITUTE OF SCIENCE
REHOVOT 76100, ISRAEL



