RANDOM EMBEDDINGS OF EUCLIDEAN SPACES IN SEQUENCE SPACES

BY

GIDEON SCHECHTMAN⁺

ABSTRACT

It is proved that for some absolute constant d and for $n \leq dm$ most $n \times m$ matrices with ± 1 entries are good embeddings of l_2^n into l_3^m . Similar theorems are obtained where $l^{\prime\prime\prime}$ is replaced by members of a wide class of sequence spaces.

1. Introduction

The main result of this paper is the following theorem.

THEOREM 1. *There exists a constant* $d > 0$ *such that for all pairs of natural numbers n, m with n* \leq *dm there exist signs* $\varepsilon_{i,j} = \pm 1$ *, i = 1,..., m, j = 1,..., n satisfying*

$$
\frac{1}{4}\left(\sum_{j=1}^n a_j^2\right)^{1/2} \leqq \left\|\sum_{j=1}^n a_j f_j\right\| \leqq 4\left(\sum_{j=1}^n a_j^2\right)^{1/2} \text{ for all } (a_j)_{j=1}^n \subseteq \mathbb{R}
$$

where $f_i = (1/m)(\varepsilon_{1,i}, \varepsilon_{2,i}, \dots, \varepsilon_{m,i})$ and $\|\cdot\|$ is the l_1^m norm. Moreover, the state*ment holds for more than half the possible choices of signs* $\varepsilon_{i,j}$ *.*

Of course, the novelty of this theorem is in the particular form of embedding l_2^n into l_1^m . The fact that l_2^n embeds into l_1^m for $n \leq dm$ is by now well-known (cf. [3] and [6]). We also find the proof of Theorem 1 instructive since it reveals the relation between the central limit theorem and finding euclidean subspaces in Banach spaces.

A similar theorem is proved in [2] and [1] for l^m , $2 \le s < \infty$ instead of l^m ; a combination of the two results enables us to extend them to a large class of spaces. We first recall the definition of q -concavity: Let X be a space with a 1-unconditional basis x_1, \dots, x_m , X is said to have *q*-concavity constant $\leq M$ $(1 \leq g \leq \infty, 1 \leq M < \infty)$ if for all n and for all f_i in $X, 1 \leq j \leq n$

³ Supported in part by NSF Grant No. MCS-79-03042.

Received May 3, 1981

$$
\left\| \left(\sum_{j=1}^n |f_j|^q \right)^{1/q} \right\| \geq M^{-1} \left(\sum_{i=1}^n \|f_i\|^q \right)^{1/q}
$$

where

$$
|f|^{\alpha} = \sum_{i=1}^{m} |a_i|^{\alpha} x_i
$$
 if $f = \sum_{i=1}^{m} a_i x_i$.

THEOREM 2. *For all* $1 \leq q, M < \infty$ there exists $a \, d = d(q, M) > 0$ such that if n *and m satisfy n* $\leq d \cdot min(m, m^{2/q})$ *and* x_1, \dots, x_m *is a 1-symmetric basis of some Banach space with q-concavity constant* $\leq M$ *then there exist signs* $\varepsilon_{ij} = \pm 1$, $i = 1, \dots, m, j = 1, \dots, n$ satisfying

$$
d\bigg(\sum_{j=1}^n a_j^2\bigg)^{1/2} \leqq \bigg\|\sum_{j=1}^n a_j f_j\bigg\| \leqq d^{-1}\bigg(\sum_{j=1}^n a_j^2\bigg)^{1/2} \quad \text{for all } (a_j)_{j=1}^n \subseteq \mathbb{R}
$$

where $f_i = \lambda(m)^{-1} \sum_{i=1}^m \varepsilon_{i,i} x_i \quad (\lambda(m) = ||\sum_{i=1}^m x_i||).$

THEOREM 3. For all $1 \leq q, M < \infty$ there exists a $d = d(q, M) > 0$ such that if n and m satisfy $n \leq d \cdot \min(m, m^{2/q})$ and x_1, \dots, x_m is a 1-unconditional basis of some Banach space with q-concavity constant $\leq M$ then there exist signs $\varepsilon_{ij} = \pm 1$, $i = 1, \dots, m$, $j = 1, \dots, n$ and a sequence $\alpha_1, \dots, \alpha_m$ in **R** such that

$$
d\left(\sum_{j=1}^n a_j^2\right)^{1/2} \leq \left\|\sum_{j=1}^n a_j f_j\right\| \leq d^{-1}\left(\sum_{j=1}^n a_j^2\right)^{1/2} \quad \text{for all } (a_j)_{j=1}^n \subseteq \mathbb{R}
$$

where $f_i = \sum_{i=1}^m \alpha_i \varepsilon_{i,i} x_i$.

Theorem 1 is proved in Section 2, and Theorems 2 and 3 in Section 3.

2. Proof **of Theorem** I

Let (Ω, \mathcal{F}, P) be a probability space, $(\phi, \Omega) = \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \cdots \mathcal{F}_1 = \mathcal{F}$ an increasing sequence of σ -fields. Given an $\mathscr F$ measurable real function f we denote by $E_k f$ the conditional expectation of f with respect to \mathcal{F}_k , $0 \le k \le l$, and by $d_k = E_k f - E_{k-1} f, 1 \leq k \leq l$ the martingale difference sequence associated with f.

LEMMA 1. Assume $E_{k-1}d_k^2 \leq \alpha_k^2$ and $|d_k| \leq \beta$ for $1 \leq k \leq l$. Then for all $0 \leq c \leq \beta^{-1} \sum_{k=1}^l \alpha_k^2$

$$
P(|f-E_0f|\geq c)\leq 2\exp\bigg(-c^2/\bigg(4\sum_{k=1}^l\alpha_k^2\bigg)\bigg).
$$

The lemma and its proof below are probably known. However, since we could not find an adequate reference we include a proof.

PROOF. For all $|y| \leq \beta$, $\lambda > 0$ we have the elementary inequality

$$
\exp(\lambda y) \leq 1 + \lambda y + \beta^{-2} (\exp(\lambda \beta) - 1 - \lambda \beta) y^{2}.
$$

If in addition $\lambda \beta \leq \frac{1}{2}$, then $\exp(\lambda \beta) - 1 - \lambda \beta \leq (\lambda \beta)^2$ and

$$
\exp(\lambda y) \leq 1 + \lambda y + \lambda^2 y^2.
$$

It follows that, for $1 \leq k \leq l$ and λ such that $\lambda \beta \leq \frac{1}{2}$,

$$
E_{k-1} \exp(\lambda d_k) \leq 1 + \lambda^2 \alpha_k^2 \leq \exp(\lambda^2 \alpha_k^2).
$$

For each $m \leq l$ we get

$$
E \exp\left(\lambda \sum_{k=1}^{m} d_k\right) = E \prod_{k=1}^{m} \exp(\lambda d_k) = E \bigg[\bigg(\prod_{k=1}^{m-1} \exp(\lambda d_k) \bigg) (E_{m-1} \exp(\lambda d_m)) \bigg]
$$

$$
\leq E \bigg(\prod_{k=1}^{m-1} \exp(\lambda d_k) \bigg) \cdot \exp{\lambda^2 \alpha_m^2}.
$$

A simple induction argument shows then that, if $\lambda \beta \leq \frac{1}{2}$,

$$
E \exp\left(\lambda \sum_{k=1}^{l} d_k\right) \leq \exp\left(\lambda^2 \sum_{k=1}^{l} \alpha_k^2\right),
$$

$$
P\left(\sum_{k=1}^{l} d_k \geq c\right) = P\left(\exp\left(\lambda \sum_{k=1}^{l} d_k - \lambda c\right) \geq 1\right)
$$

$$
\leq E \exp\left(\lambda \sum_{k=1}^{l} d_k - \lambda c\right) \leq \exp\left(\lambda^2 \sum_{k=1}^{l} \alpha_k^2 - \lambda c\right).
$$

Choose $\lambda = c/(2\sum_{k=1}^{l} \alpha_k^2)$. Then, if $c \leq \beta^{-1}\sum_{k=1}^{l} \alpha_k^2$, $\lambda\beta \leq \frac{1}{2}$, and

$$
P(f-E_0f\geq c)\leq \exp\bigg(-c^2/\bigg(4\sum_{k=1}^l\alpha_k^2\bigg)\bigg).
$$

Since the same inequality holds for $-f$ instead of f we get the desired inequality. \Box

REMARK. A similar inequality has already been used in the context of Banach spaces by Maurey [8].

PROOF OF THEOREM 1. Fix $n, m \in \mathbb{N}$. Let $\phi = \sigma_0 \subset \sigma_1 \subset \cdots \subset \sigma_{n,m}$ be an increasing family of subsets of $\{1, 2, \dots, m\} \times \{1, 2, \dots, n\}$ with $\bar{\sigma}_k = k$, $0 \le k \le k$ *nm.* Consider the probability space (Ω, \mathcal{F}, P) where $\Omega = \{-1, 1\}^{nm}$, $\mathcal{F} = 2^{\Omega}$ and $P((\varepsilon_{i,j})_{i=1}^m, n=1}^n) = 2^{-nm}$. For $0 \le k \le nm$ let \mathcal{F}_k be the field consisting of all sets which depend only on the coordinates appearing in σ_k , i.e. an atom of \mathcal{F}_k is a set of the form

$$
A\left((\delta_{i,j})_{i,j\in\sigma_k}\right)=\{(\varepsilon_{i,j})_{i=1,j=1}^{m}\,;\,\varepsilon_{i,j}=\delta_{i,j}\,\,\text{for}\,\,i,j\in\sigma_k\}.
$$

Fix a sequence $(a_i)_{i=1}^n$ with $\sum_{j=1}^n a_j^2 = 1$ and consider the function

$$
f(\varepsilon)=\left\|\frac{1}{m}\sum_{i=1}^m\sum_{j=1}^n\varepsilon_{i,j}a_je_i\right\|.
$$

If $\varepsilon, \delta \in \Omega$ are different only in their *i,j* coordinate, then $|f(\varepsilon)-f(\delta)| \le$ $(2/m)|a_i|$. It follows that, if A is an atom of \mathcal{F}_{k-1} , then

$$
\max_{A} E_{\mathbf{k}}f - \min_{A} E_{\mathbf{k}}f \leq (2/m) |a_i|
$$

where j is such that $\{(i, j)\} = \sigma_k \setminus \sigma_{k-1}$ for some (unique) i. Thus $|d_k| \leq (2/m)|a_j| \leq$ *2/m.* $\sum_{i=1}^{m} \sum_{j=1}^{n} ((2/m)a_i)^2 = 4/m$, so by Lemma 1

$$
P(|f-Ef| \geq c) \leq 2 \exp(-c^2 m/16)
$$

for all $c \le 2$. By the Khinchine inequality [10], $1/\sqrt{2} \le Ef \le 1$; thus

$$
P(1/2\sqrt{2} \leq f \leq 2) > 1 - 2\exp(-m/128).
$$

We now choose an ε -net M on the sphere of l_2^n of cardinality $\leq \exp(2n/\varepsilon)$ (cf. [3]), and get

$$
P\left(\frac{1}{2\sqrt{2}}\leq \left\|\frac{1}{m}\sum_{i=1}^{m}\sum_{j=1}^{n}\varepsilon_{i,j}a_{j}e_{i}\right\|\leq 2 \text{ for all } (a_{j})\in M\right)>1-2\exp\left(\frac{2n}{\varepsilon}-\frac{m}{128}\right).
$$

Now, choose ε such that

$$
\frac{1}{2\sqrt{2}} \leq \left\| \frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{n} \varepsilon_{i,j} a_j e_i \right\| \leq 2 \quad \text{for all } (a_j)_{j=1}^{n} \in M
$$

implies

$$
\frac{1}{4} \leq \left\| \frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{n} \varepsilon_{i,j} a_{j} e_{i} \right\| \leq 4 \quad \text{for all } (a_{j})_{j=1}^{n} \text{ with } \sum_{j=1}^{n} a_{j}^{2} = 1.
$$

Then, if $n \leq \frac{1}{2} \varepsilon (m/128 - \log 4)$,

$$
\frac{1}{4} \le \left\| \frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{n} \varepsilon_{i,j} a_{j} e_{i} \right\| \le 4
$$

for all $(a_{j})_{j=1}^{n}$ with $\sum_{j=1}^{n} a_{j}^{2} = 1$ with probability $> \frac{1}{2}$.

REMARK. The requirement that $(e_i)_{i=1}^m$ is the unit vector basis of l_1^m and that $\|\cdot\|$ is the I_1^m norm can be weakened somewhat in one of the following two ways: (1) $\exists K$ such that

$$
\operatorname{Ave}\limits_{\pm}\left\|\sum_{i=1}^m \pm a_i e_i\right\| \stackrel{\kappa}{\approx} \sum_{i=1}^m |a_i| \qquad \text{for all } (a_i)_{i=1}^m,
$$

or (2) $\|\cdot\|$ has cotype $q < \infty$ with constant L, $\|e_i\| = 1$ for $1 \le i \le m$ and

$$
K^{-1} \leq \text{Ave} \left\| \sum_{i=1}^m \pm e_i \right\| / m \leq K.
$$

The constants d and 4 in the statement of the theorem will depend now on K, L and q.

3. Proof of Theorems 2 and 3

We begin by stating a theorem proved in [2] and [1]:

THEOREM (B.D.G.J.N.). *For each* $2 \leq q < \infty$ *there exist constants* $0 < K$, $d < \infty$ such that for all n and m with $n \leq dm^{2/q}$ for more than half the possible *choices of signs* $\varepsilon_{i,j} = \pm 1$ *, i = 1,..., m, j = 1,..., n*

$$
K^{-1}\left(\sum_{j=1}^n a_j^2\right)^{1/2} \leqq \left\|\sum_{j=1}^n a_j f_j\right\| \leq K\left(\sum_{j=1}^n a_j^2\right)^{1/2} \quad \text{for all } (a_j)_{j=1}^n \subseteq \mathbb{R}
$$

where $f_i = m^{-1/q} (\varepsilon_{1,i}, \varepsilon_{2,i}, \cdots, \varepsilon_{m,j})$ *and* $\|\cdot\|$ *is the l^m norm.*

This is essentially theorem 1.1 in [1]. The case $q = 2$ is not included in the statement there but see the remark following lemma 2.3 in [1]. For $q > 2$, d can be chosen as 1.

As an immediate corollary of this and Theorem 1 we get:

PROPOSITION 1. Let $2 \leq q < \infty$. There exist constants $0 < d$, $K < \infty$ such that if $n \leq dm^{2/q}$ and x_1, \dots, x_m is a sequence in some Banach space satisfying

(*)
$$
\frac{1}{m}\sum_{i=1}^{m} |a_i| \le \left\| \sum_{i=1}^{m} a_i x_i \right\| \le \left(\frac{1}{m}\sum_{i=1}^{m} |a_i|^q \right)^{1/q}
$$
 for all $(a_i)_{i=1}^{m} \subseteq \mathbb{R}$

then there exist signs $\varepsilon_{i,j}$, $i = 1, \dots, m$, $j = 1, \dots, n$ with

$$
K^{-1}\left(\sum_{j=1}^n a_j^2\right)^{1/2} \leqq \left\|\sum_{j=1}^n a_j f_j\right\| \leq K\left(\sum_{j=1}^n a_j^2\right)^{1/2}
$$

where $f_i = \sum_{i=1}^m \varepsilon_{i,j}x_i$, $j = 1, \dots, n$.

Moreover, there is one sequence of signs $(\varepsilon_{i,j})$ *which works simultaneously for all* $(x_i)_{i=1}^m$ *satisfying* $(*)$.

PROOF OF THEOREM 2. If $(x_i)_{i=1}^m$ is 1-symmetric, then

$$
(**) \qquad \frac{1}{m}\sum_{i=1}^{m} |a_i| \leq \lambda(m)^{-1} \left\| \sum_{i=1}^{m} a_i x_i \right\| \leq \max_{1 \leq i \leq m} |a_i|.
$$

A simple renorming argument **(cf. [7], p.** 54) shows that without loss of generality the *q*-concavity constant $M = 1$. Then the argument in ([5], p. 14) shows that the **right-hand side in (**) may be replaced by** $((1/m)\sum_{i=1}^{m} |a_i|^q)^{1/q}$ **and we apply the proposition.**

REMARK. The assumption " $(x_i)_{i=1}^m$ is 1-symmetric" can be replaced by " $(x_i)_{i=1}^m$ is 1-unconditional and $\|\sum_{i=1}^{m} x_i\| \|\sum_{i=1}^{m} x_i^*\| = m$ "; consult [9] where such bases are **treated.**

PROOF OF THEOREM 3. It follows from [4] that there exists a sequence $(\alpha_i)_{i=1}^m$ such that

$$
\frac{1}{m}\sum_{i=1}^m |a_i| \leq \left\|\sum_{i=1}^m a_i \alpha_i x_i\right\| \leq \max_{1 \leq i \leq m} |a_i| \quad \text{for all } (a_i)_{i=1}^m \subseteq \mathbf{R}.
$$

The rest of the proof is exactly the same as that of Theorem 2.

REFERENCES

1. G. Bennett, L. E. Dor, V. Goodman, W. B. Johnson and C. M. Newman, *On uncomplemented subspaces of* L_p *,* $1 < p < 2$, Israel J. Math. 26 (1977), 178-187.

2. G. Bennett, V. Goodman and C. M. Newman, *Norms of random matrices,* Pacific J. Math. 59 (1975), 359-365.

3. T. Figiel, J. Lindenstrauss and V. D. Milman, The *dimension of almost spherical sections of convex bodies,* Acta Math. 139 (1977), 53-94.

4. R. I. Jamison and W. H. Ruckle, *Factoring absolutely converging series,* Math. Ann. 224 (1976), 143-148.

5. W. B. Johnson, B. Maurey, G. Schechtman and L. Tzafriri, *Symmetric structures in Banach spaces,* Memoirs Amer. Math. Soc. No. 217, 1979.

6. B. S. Kashin, *Diameter of some finite dimensional sets and of some classes of smooth functions,* Izv. AN SSSR, Ser. Mat., 41 (1977), 334-351 (Russian).

7. J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces, II, Function Spaces,* Springer-Verlag, 1979.

8. B. Maurey, *Construction de suites symmetrique,* C. R. Acad. Sci. Paris, S6r. A-B 288 (1979), 679-681.

9. H. P. Rosenthal, *Some applications of p-summing operators to Banach space theory,* Studia Math. 58 (1976), 21-43.

10. S. I. Szarek, *On the best constant in the Khinchine inequality,* Studia Math. 58 (1976), 197-208.

DEPARTMENT OF THEORETICAL MATHEMATICS

THE WEIZMANN INSTITUTE OF SCIENCE

REHOVOT 76100, ISRAEL

$$
\Box
$$