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RANDOM EMBEDDINGS OF 
EUCLIDEAN SPACES IN SEQUENCE SPACES 

BY 

G I D E O N  S C H E C H T M A N t  

ABSTRACT 

It is proved that for some absolute constant  d and for n <= d m  most n • m 
matrices with - 1 entries are good embeddings  of l~ into 17. Similar theorems 
are obtained where l~' is replaced by members  of a wide class of sequence 

spaces. 

1. Introduction 

The main result of this paper is the following theorem. 

THEOREM 1. There exists a constant d > 0 such that for all pairs of  natural 

numbers n, m with n <= dm there exist signs e~j = + 1, i = 1 , . . . ,  m, j = 1 , . . . ,  n 

satisfying 

II I _ 2 for all (as)7~l C R 4 a,  <= ajfj <=4 aj 
i=l i=1 i=1 

where f~ = (1/m)(el.j, e2.n" �9 ", era.i) and [J-II is the 17 norm. Moreover, the state- 

ment  holds for more than hal f  the possible choices of  signs e~,s. 

Of course, the novelty of this theorem is in the particular form of embedding 

17 into l~". The fact that 1"2 embeds into l'f for n = < d m  is by now well-known (cf. 

[3] and [6]). We also find the proof of Theorem 1 instructive.since it reveals the 

relation between the central limit theorem and finding euclidean subspaces in 

Banach spaces. 

A similar theorem is proved in [2] and [1] for 17, 2 <- s < ~ instead of l?;  a 

combination of the two results enables us to extend them to a large class of 

spaces. We first recall the definition of q-concavity: Let X be a space with a 

1-unconditional basis x~ , . . . ,  xm, X is said to have q-concavi ty  constant <= M 

( l=<q=<~,  l = < M < ~ ) i f  for all n and for al l f j  i n X ,  l<=j<=n 
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where 

I/l~=~la, l~x, if / = ~ a,x~. 
i = 1  i = l  

THEOREM 2. For all 1 <= q, M < oo there exists a d = d(q, M)  > 0 such that if n 

and m satis/y n <= d . min(m, m TM) and x~, . . ", xs is a 1-symmetric basis o/some 

Banach space with q-concavity constant <= M then there exist signs ets = +-1, 

i = 1 , . . . ,  m, j = 1 , . . . ,  n satis/ying 

d a~) <= aj/~ <=d-' a~) foralt(a~)7=,C_R 
j= l  l = l  

where  [, = X(m) - '~ ' ; '= ,  ~,.,x, CA(m)=ll:C;'=lx, ll). 

THEOREM 3. For all 1 <= q, M < oo there exists a d = d(q, M )  > 0 such that if n 

�9 min(m,m j a n d x ~ ,  ., and m satisfy n <= d 2/q~ ." Xs is a 1-unconditional basis of 

some Banach space with q-concavity constant <-M then there exist signs 

e~i = --- I, i = I,--., m, j = I,..., n and a sequence a~, . . ", as in R such that 

)'~ II a,r, II d at2 =< <- d -~ a /or all (aj)7~, _C R 
j=l 

where [j = E,%~ a~etjx,. 

Theorem 1 is proved in Section 2, and Theorems 2 and 3 in Section 3. 

2. Proof of Theorem I 

Let (~, ~:, P) be a probability sPace, (~b, f~)= ~0c ~:~ c... ~ = ~: an in- 

creasing sequence of o--fields. Given an~ measurable real function jf we denote 

by Ek[ the conditional expectation of [ with respect to ~:k, 0 =< k =</, and by 

d~ = Ek/ - Ek-~/, 1 <= k <= I the martingale difference sequence associated with/. 

LEMMA 1. Assume E~_~d~ <= o~ and [dk I <= [3 for 1 <= k <= 1. Then /or all 

P ( I / - E o / l > c ) < 2 e x p ( - c Z / ( 4 ~ a ~ ) )  ~ . 

The lemma and its proof below are probably known�9 However,  since we could 

not find an adequate reference we include a proof. 
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PROOF. For all l y l =  </3, A > 0 we have the elementary inequality 

exp(Ay) _-< 1 + Ay +/3-2 (exp(A/3) - 1 - A/3)y 2. 

If in addition A/3 =<�89 then e x p ( A / 3 ) - 1 -  A/3 = (A/3) 2 and 

exp(Ay) =< 1 + Ay + A~y 2. 

It follows that, for 1 =< k =< ! and A such that A/3 =< �89 

Ek_~ exp(Adk) _-< 1 + A2a~, _-< exp(X 2,x ~,). 

For each m _-< l we get 

- i(n  ) ] E exp A dk = E I-I exp(Ad~) = E exp(Adk) (Em_~exp(Adm)) 
= k =1 / \  k =1  

(-H exp  o _--< E exp(Adk �9 :,.. 
k = l  

A simple induction argument shows then that, if 

k =1 k ~1  

x/3 _-<�89 

d k =  > c  = ex d k - A c  

< E ex dk AC < ex 2 - -  = O t  - -  )tC 
k = l  

Choose A = c/(2E~,=, a~,). Then, if c _--</3-1E~=, ot~,, A/3 =<�89 and 

P(f -Eof> c ) < e x p ( - c 2 /  (4 ~__ ot~ )) �9 

Since the same inequality holds for - f  instead of f we get the desired 

inequality. [] 

REMARK. A similar inequality has already been used in the context of 

Banach spaces by Maurey [8]. 

PROO~ OF THEOREM 1. Fix n, m E N .  Let ~b=troCcr~C...Ctr,~,, be an 

increasing family of subsets of {1 ,2 , . - . ,m}•  with ~k = k, 0 -  < k _-< 

rim. Consider the probability space (~, ~, P) where f~ = { -  1, 1}"", f f  = 2 ~ and 

P((e~.s)7:~.T-O = 2 "". For 0 <= k <= nm let ~:k be the field consisting of all sets 

which depend only on the coordinates appearing in cry, i.e. an atom of ~k is a set 

of the form 
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A ((&.j),.j~=~) = {(e~s)7=,.;=, ; e~s = &j for i, j ~ Ork }. 

Fix a sequence  (aj)~'=1 with E~'=1 a~ = 1 and consider  the funct ion 

ll. f ( e )  = i = l  j = l  

If e, 6 E f l  are different only in their  i,j coordinate ,  then [f(e)-f(a)[_-< 
(2/m)las I. It follows that,  if A is an a tom of 2Tk_l, then 

maxa EEl -- mina EEl <---- (2/m )l aj I 

where j is such that {(i, j)} = trk \trk-~ for some (unique)  i. Thus  I & [ < (2/m)[ aj I --< 

2/m. s163 2= 4/m, so by L e m m a  1 

P([[ - 17,[I _-> c) _-_ 2 exp( - c2m/16) 

for all c-_<2. By the Khinchine inequali ty [10], 1/X/2<-_Ef<= 1; thus 

P(1/2  V 2  _-_ [ =< 2) > 1 - 2 exp( - m/128).  

We now choose  an e -ne t  M on the sphere  of l~ of cardinali ty <= exp(2n/e) (cf. 

[3]), and get 

p{ l_l__< I ~ ~e,.saje, l l<__2foral l (as)~M)>l_2exp(2n m ) 
\ 2 V ~  = m,= l ,= ,  - e  ]~-8 " 

Now, choose e such that 

2X/2 m ,=i j=l 

implies 

II " ~<= ei.jaje~ < 4  for all (aj)j=l with a j = l .  
i=1 j=l j=l 

< 1  Then,  if n =~e(m/128-1og4), 

e 4 
4 =  r~ i ~ I  I=1 ' 

2 1 
for all (as);=, with aj  = 1 with probabil i ty > ~. [ ]  

j=l 

REMARK. The  requ i rement  that (ei)~%l is the unit vector  basis of 17' and that 

H" I1 is the IT norm can be weakened  somewhat  in one  of the following two ways: 

(1) =IK such that 
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II A v e  +- a,ei --~ ai for all (a~), =1, +-- i=l i=1 
or (2) II II has co type  q < oo with cons tant  L, 11 e, ]1 = 1 for  1 _-< i _--< m and 

iv K 1 < A_+ve= -+ei m =<K. 

The  constants  d and 4 in the s t a t emen t  of the t h e o r e m  will d e p e n d  now on  K, L 

and q. 

3. Proof  of Theo rems  2 and 3 

We begin  by stating a t h e o r e m  p roved  in [2] and [1]: 

THEOREM (B.D.G.J .N. ) .  For each 2 < q < oo there exist constants 0 < K, 

d < oo such that for all n and m with n <-_ d m  TM for more than hal f  the possible 

choices o f  signs e,.j = +- 1, i = 1 , . . . ,  m, j = 1 , . . . ,  n 

(j----~l ~)112 II 2 J~ll (~=~l )112 n 
2 fora l l  (aj)j=~ C R  K 1 a _-< a _-<K aj  j=l 

where ~ = m -'/q ( e ,.,, e 2.,, " ", era,,) and [l " ][ is the l'~ norm. 

This is essentially t h e o r e m  1.1 in [1]. T h e  case q = 2 is not  included in the 

s t a tement  there  but  see the r e m a r k  following l e m m a  2.3 in [1]. For  q > 2, d can 

be chosen as 1. 

As  an immed ia t e  corol lary of this and  T h e o r e m  1 we get: 

PROPOSITION 1. Let  2 <--_ q < oo. There exist constants 0 < d, K < oo such that if 

n < d m  2/q and x~,.  �9 xm is a sequence in some B a n a c h  space satisfying 

1 2 [ a , l < [ 2 a , x , l [ < ( 1 2 f a ,  lq) 'q (*) mi=~ = i=, = \ m ~ = ~  forall(a~)~%,C_R 

then there exist signs e,.j, i = 1,. �9 m, j = 1,. �9 n with 

II I K ' a <- aj~ <= K a~ j=! 
where ~ = ET-, e~.jx, j = 1 , . . . ,  n. 

Moreover, there is one sequence of  signs (e~,j) which works simultaneously for all 

(x , )Z,  satisfying (*). 

PROOF OF THEOREM 2. If (X,)Z, is l - symmet r ic ,  then 
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t , ,)  l la, l x<m) ,ll ,a,x,l[ m la, I m J=l iffil 

A simple renorming argument (cf. [7], p. 54) shows that without loss of generality 
the q-concavity constant M = 1. Then the argument in ([5], p. 14) shows that the 
right-hand side in (**) may be replaced by ((1/m)ET~ l a, I') TM and we apply the 
proposition. [ ]  

REMARK. The assumption "(x~)7~=~ is 1-symmetric" can be replaced by "(x~)7'~ 

is 1-unconditional and II x, II IlY ; x *11 = m";  consult [91 where such bases are 
treated. 

PROOF OF THEOREM 3. 

such that 

m o [a't--< a,t~,x, =<,max, la, I for all (a,),%, C R. 

The rest of the proof is exactly the same as that of Theorem 2. 

It follows from [4] that there exists a sequence (a,)~Z~ 

[] 
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